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Abstract—The switches between a non-privileged application
and the OS kernel running in the CPU’s supervisor mode have
been inducing performance costs despite manufacturer efforts
to provide special instructions for such transition. Software that
heavily interacts with the underlying OS (e.g., I/O intensive and
event-driven applications) suffers from system call overhead.
To deteriorate this situation, security vulnerabilities in mod-
ern processors have prompted kernel mitigations that further
increase the transition overhead. Particularly system-call–heavy
applications have been reported to be slowed down by up to
30% with kernel page-table isolation (KPTI), the widely deployed
mitigation for the Meltdown vulnerability. To decouple system
calls from mode transitions, we revisit an old idea known as
system-call batching or multi-calls: the bundling of system calls
into a combined call, which only incurs the mode-transition costs
of a single one. And then, we have implemented ESCA scheme
to adapt system-call batching to Linux-based servers in the light
of Meltdown and Spectre, effectively eliminating the slowdown
of KPTI-affected applications. Our evaluation shows that the
throughputs of real-world applications, benefiting from ESCA,
can be improved with only 2 lines of code changed respectively:
Nginx by up to 12%, lighttpd by up to 23%, and Redis by 4%.
Meanwhile, using aggregated transitions, our approach allows
faster system calls interleaved with full compatibility but without
requiring Linux kernel patches.

I. INTRODUCTION

An event-driven architecture refers to a system composed
of loosely coupled microservices. The creator (source) of the
event only knows the event transpired but has no knowledge
of the event’s subsequent processing or the interested parties
[1]. In modern HTTP servers, I/O event notification system
calls such as epoll on Linux and kqueue on FreeBSD
are used for listening to whether there are incoming events,
which will be designated to the corresponding event handlers.
Event-driven-based applications are quite sophisticated to be
modeled: concurrent and keep-alive connections requests to
the web server result in a mix of CPU-bound and I/O-
bound processes. In addition, the event-driven architecture is
composed of multiple microservices. The state-transition of
them is largely unpredictable, which implies a grand challenge
to optimize or instrument such non-deterministic applications
[2]. To take Nginx as an example, it is one of the leading web
servers, capable of representing highly concurrent event-driven
applications. Profile-guided optimization (PGO) shipped with
the state-of-the-art optimizing compilers is known to improve
most software packages except Nginx – Yuan et al. reported
that the degradation rates were about 0.59% [3]. It means that

the execution of event-driven applications may not have a fixed
execution path; hence the benefits brought from cache locality
and branch prediction would be restrained.

A long-running event-driven application tends to face the
challenge of a sudden burst of requests and gets involved in the
system call (aka syscall), especially for I/O operations. Context
switches between an unprivileged user process and the OS
kernel running in the CPU’s supervisor mode have typically
been costly. Event-driven servers, classified as syscall-heavy
applications, suffer from performance problems, caused by
massive mode switches [4], [5]. KPTI dramatically increased
this cost: directly, by switching the active page table at each
context transition (i.e., two page-table switches per syscall),
and indirectly by the subsequent, longer-lasting performance
penalty from the TLB flushes triggered by these address space
changes [6]. In the worst case, it causes 12% overhead to
Redis, 15% to Apache, 12% to Nginx, and 2% to MongoDB
[7]. In consequence, particularly syscall–heavy applications
have been reported to be slowed down to 30% on KPTI-
protected systems [8].

From the perspective of an application, each CPU cycle
spent on the syscall interface is wasted and cannot be used
for application-specific tasks. An old idea, “syscall batching”
known as “multi-calls,” was introduced to reduce syscall
overhead: the bundling of several successive but potentially
not directly related syscalls into a combined one, which only
incurs the kernel-transition costs of a single syscall [9]–[12].
Nevertheless, plain syscall batching has some disadvantages
like an increased total completion time that make this tech-
nique less attractive for event-driven applications. The main
objective of this work is to reduce the per-syscall overhead
through an advanced form of syscall aggregation, which is
more flexible and applicable to service-oriented scenarios,
offering full compatibility with the existing OS kernels and
syscall interfaces. The contributions of this paper are:

• We propose and implement an effective syscall batching
scheme to decrease the number of kernel boundary cross-
ings, suitable for event-driven servers.

• Full syscall compatibility has been guaranteed by design
in conjunction with real-world applications, including
widely adopted web servers and key-value databases.

• An asynchronous and parallel execution of syscalls is
being evaluated to eliminate unwanted latency, not limited
to within the same batch.



II. BACKGROUND AND RELATED WORK

A. Asynchronous I/O v.s. Non-blocking I/O

From the perspective of Linux, the file descriptor can
become non-blocking access by configuring its attribute to
O_NONBLOCK. Non-blocking I/O only guarantees that when
the data is not available, the procedure call will return im-
mediately with EAGAIN (resource temporarily unavailable)
as an error indication without additional kernel involvement.
However, asynchronous I/O will not only return from the
kernel immediately but also trigger the kernel thread to execute
tasks in the background.

B. Development of Linux Asynchronous I/O (AIO)

In data-intensive applications, synchronous I/O operations
often become a performance bottleneck. To avoid time-
consuming blocking operations, since Linux v2.6, native AIO
was introduced as a kernel-level implementation, supporting
direct I/O mode only. By means of buffered I/O, the io uring in
Linux v5.1 eliminates the most challenging limitations of pre-
vious work [13]. io uring provides a pair of rings (submission
queue and completion queue) as an effective communication
channel between the user applications and kernel. Several core
specialized threads are spawned and asynchronously execute
the tasks in the submission queue. To handle data that is
not ready in buffered, on the other hand, a new workqueue
subsystem (io-wq) that queues work items. Instead of using
existing VFS interface, io uring abstracts a series of I/O
operations that is more friendly to an asynchronous model.
The io uring is still growing with doubtful maturities, such as
limited I/O operations and API stability for major application
adoptions. Performance drops and the regression of io uring
has been spotted from Linux v5.7.15 to v5.7.16 and later
tweaked in v5.11 [14].

C. Compound System Calls

The frequent data movement across the user-kernel bound-
ary often becomes the performance bottleneck of web servers.
Compound System Calls (Cosy) [15] packs the data-intense
section into the kernel and executes it with the zero-copy tech-
nique, bringng 20-80% performance improvements to non-I/O
bound applications. However, since Linux v2.2, read-write
can be replaced by sendfile syscall, having almost no data
copy. It means that Cosy no longer makes sense to allocate
shared buffers (which might cause overhead) to achieve zero-
copy. Furthermore, Cosy-GCC only supports a subset of the C
syntax, and the function call is not supported, which substan-
tially negates the practicality. Meanwhile, Cosy adds several
new fields to the kernel internal structure task_struct,
which affects non-Cosy applications.

D. Batching

Rather than reducing the execution time of a single syscall,
both System Call Clustering (SCC) [16] and Jadhav et al.
[10] try to shorten the execution time of multiple syscalls by
batching. SCC searches the clusterable region and transforms
several syscalls into a single syscall, thereby reducing the

number of user-kernel boundary crossings and leading to
overall performance improvement. Compiler facilities such as
function inlining and loop unrolling are provided to extend
the clusterable region. However, the size of allocated memory
for clusterable regions is not constant. It is proportional to the
total number of syscalls’ parameters. Also, the composition of
the clusters cannot contain non-syscall statements.

Jadhav et al. propose new syscalls recvmmmsg() and
sendmmmsg() to allow for receiving and sending multiple
messages from multiple sockets in a single syscall invocation.
It is targeted specifically at applications with high concur-
rent socket connections and using the sendmmsg-like I/O
function, and syscalls will be invoked only when the number
of syscalls crosses threshold, which implies the starting time
of syscall is unbounded. The method is only suitable for
applications which are not sensitive to latency.

E. FlexSC

Traditional syscalls are likely implemented as the syn-
chronous model and will raise a software interrupt when
they are invoked, causing the cache damange. FlexSC [17]
decouples the execution of syscalls, by means of deferring
and batching the execution of syscalls, to improve temporal
locality. To reduce blocking time and consider load balance,
FlexSC offloads the execution of syscalls by maintaining ker-
nel threads that are bound on different cores. It conflicts with
the Unix-style programming model, so a threading package is
created to make syscalls work transparently.

Meanwhile, heavy modifications against operating system
kernel and C runtime library are needed, involving about
1400 lines changed in Linux kernel and glibc. The execution
behavior of all syscalls is turned into being asynchronous
regardless of their blocking and synchronous essence, leading
to unguaranteed compatibility concerns. About 300 lines were
changed for Nginx and Memcached [18], preventing FlexSC
from being widely adopted by Linux kernel community due
to its highly specialized and intrusive nature.

F. FlexSC v.s io uring

The design concepts of FlexSC and io uring are very
similar: 1) the original blocking I/O are substituted for I/O-
intensive applications; 2) the I/O operations will be designated
to a specific kernel thread, and the I/O operations of the
user space will return immediately, meaning non-blocking.
In addition, core specialization is also a common strategy of
the two. Threads have their affinity, which not only improves
locality but also ensures scalability. Last, to prevent the kernel
thread from occupying too much CPU cycle, threads of both
will sleep if idle time is greater than a specific threshold.
However, FlexSC uses a shared table as a communication
channel between kernel space and user space, while io uring
uses submit queue and completion queue. I/O offloading brings
benefits to I/O-intensive applications, whether in the aspect
of CPU usage, data locality, or the number of exceptions.
Nevertheless, it is not a trivial task to rewrite synchronous
applications into asynchronous counterpart.
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Figure 1. Each typical syscall undergoes two
times of mode switch.

batch_start batch_flush
write(fd, buf, len) close(fd)

sys_flush
sys_write

sys_close

shared table

ID arg1 arg2 arg3 ...

1 fd buf len -

3 fd - - -

- - - - -

user 
space

kernel 
space

mode switch

Time

Figure 2. ESCA avoids syscalls raise exceptions in batching segment enclosed by
batch start and batch flush. By information on shared table, it executes all of them in
one syscall.

Is next statement
out of Segment

ID in statement If ID is modified
in Cur_Stmt

If ID be accessed by
Normal_Stmt in Future

If ID be Touched by
Normal_Stmt in Future

Batch-able Not batch-able

Λ

yes

no

no

no

yes
yes

yes

pointer
type

l-value

no

Figure 3. Flowchart of determining if segment is batch-able

III. DESIGN

By decoupling syscalls and effectively reducing mode
switch times, Effective System Call Aggregation (ESCA), the
solution we proposed, can offer greater performance and flexi-
bility than the traditional syscall interface. As shown in Figure
1, the number of mode switches is proportional to the number
of syscalls. Considering event-driven applications, frequent
mode switches hamper the performance. In our design (as
shown in Figure 2), we provide two API calls, batch_start
and batch_flush. The code section enclosed by them is
called batching segment. It can appear more than one time
in a single application. Compared with typical syscalls, ESCA
eliminates mode switches in batching segments by decoupling
syscalls. Instead of switching to the kernel or executing the
corresponding service routine, syscalls in batching segment
only record their syscall ID and arguments in the shared table.
After batch_flush is called, ESCA finally switches to
kernel mode, executes all syscalls in the shared table, and then
switches back to user mode. No matter how many syscalls are
there in batching segment, they are always handled by a single
syscall invocation with two times mode switch. Hence, we’ll
explain the detailed ESCA working mechanism (Figure 4) in
the following section.

A. Valid Batching Segment

Due to putting off invocation of syscalls until flushing
them, some statements may touch undetermined variables. The
programmers are responsible for validating batching segments.
To avoid this kind of dependency issue, we will discuss how
to determine if the batching segment is batch-able. For the
convenience of explanation, we define the following symbols:

• Segment: statements set enclosed by batch_start and
batch_flush

• Future: code after current statement and before
batch_flush

• ID: collection of syscall’s arguments and return value
• Cur Stmt: current statement
• Normal Stmt: statement without syscall
• Sys Stmt: statement with syscall
• Touched: be read or be modified

To examine if the Segment can be batched, we go through
the flowchart shown in Figure 3. If any of the following
conditions exists in Segment, then it is not batch-able:

1) Return value of syscall will be accessed in Future.
Relative example is shown in Listing 1.

2) Pointer type argument is modified in current syscall and
will be accessed by Normal Stmt in Future. Relative
example is shown in Listing 2.

3) Pointer type argument in syscall will be modified by
Normal Stmt in Future. Relative example is shown in
Listing 3.

1 /* enter batching segment */
2 batch_start();
3 ret = close(fd);
4 /* return value will be accessed */
5 if (ret < 0) error_handling();
6 batch_flush();
7 /* start to execute all batched syscall */

Listing 1. Access undetermined l-value



1 /* enter batching segment */
2 batch_start();
3 /* buf will be modified */
4 read(fd, buf, 100);
5 /* buf will be accessed */
6 res = strcmp(buf, "foo");
7 batch_flush();
8 /* start to execute all batched syscall */

Listing 2. Access undetermined arguments

1 /* enter batching segment */
2 batch_start();
3 write(fd, buf, 100);
4 // buf will be modified by the original syscall
5 strcpy(buf, "foo");
6 batch_flush();
7 /* start to execute all batched syscall */

Listing 3. Override syscall’s pointer type arguments

B. System Call Decoupling

After calling syscall, the software trap will be triggered,
then switch to kernel mode, looking for the corresponding
trap service routine on the syscall table. It will switch back to
user mode after finishing the service. To batch the syscalls, we
must change the behavior of the original ones. First, we need
to prevent syscalls in the batching segment from switching to
kernel space. Second, we need to implement a new syscall that
can execute cumulative syscalls at once.

ID arg1 arg2 arg3 ...

64 fd buf1 len1 -

64 fd buf2 len2 -

57 fd - - -

- - - - -

batch_start();

write(fd, buf1, len1);

write(fd, buf2, len2);

close(fd);

batch_flush();

1

2

3
ESCA

sys_write(fd, buf1, len1);

sys_write(fd, buf2, len2);

sys_close(fd);

5

6

7

4

Figure 4. ESCA working mechanism

C. Shared Table Between Kernel and User Space

To decouple syscall and got inspired by FlexSC, we need
to create a mechanism to allow user space and kernel space to
communicate with each other. We design the shared table to
take care of this and it is composed of 64 entries. If the number
of batched syscalls is greater than 64, they will be flushed
internally. Each entry is 64 bytes and consists of several fields,
including syscall ID, the array with six elements, and return
values of syscall. The reason we design the size of an entry as
64 bytes is that it makes the size of the shared table exactly
be one page; hence the data we access will scarcely be evicted
from the TLB.

Take Figure 4 as an example. After entering batching the
segment, the behavior of syscalls will be changed. Syscall
write and close neither switch to kernel mode nor invocate
relative syscall handlers. Instead, they only record their syscall
ID and arguments to the shared table. After leaving the batch-
ing segment, batch_flush, a user-level syscall wrapper,
was triggered. It helps the procedure to trap into the kernel
and execute the kernel function in ESCA, which traverses
the shared table and serially invocates syscall handlers. In
our example, the syscall handler for write can be found

by accessing the 64th member in sys_call_table (the
symbol represents syscall table in Linux).

IV. IMPLEMENTATIONS

In this section, we will explain the reasons why we encap-
sulate kernel modifications into a kernel module, how we let
kernel and user efficiently communicate with each other, and
the adaptation for executing syscalls.1

A. Kernel Module

To implement batching syscalls efficiently, kernel changes
are needed alongside the changes against event-driven appli-
cations. For the sake of compatibility and potential security
concerns, this work concentrates on the principle of least
privilege for OS kernel changes to minimize the privileged
threat surfaces. We pack kernel changes into a kernel module,
which can prevent applications that do not use ESCA from
being affected. Besides, compiling the kernel module takes a
shorter time than that of Linux kernel which implies the kernel
module helps improve development efficiency.

B. Zero Copy

In Linux, we cannot access the user address space in
kernel mode. Although we can achieve it by using a function
like copy_from_user, it impacts the performance more
seriously as the size of copied data increases. In our imple-
mentation, we use get_user_pages to bind the page to the
physical memory, and use kmap to map the physical pages to
the kernel address space. In this way, data sharing is without
the copy and the procedure is a one-time allocation.

C. Syscall Wrapper

To change the behavior of the syscall, when the application
is executed, the syscall wrapper of glibc is replaced with our
shared library through LD_PRELOAD. Instead of trapping into
kernel space and doing the trap service routine, the syscall
wrapper only records specific information now. Because this
approach ingeniously removes the restrictions of the batching
segment, interleaving non-syscall logics and full C program-
ming compatibility are supported.

D. Syscall Hooking

We cannot add syscalls without modifying the Linux kernel
[19]. What we can do is to replace an entry of the syscall
table with our customized handler. It is crucial to make sure
that the replaced entry is unused; otherwise, the system may
crash after hooking the syscalls. kallsyms_lookup_name
is no longer exported after Linux v5.7 but we can still locate
the address of the syscall table through the kernel symbol
table. Proper offset is needed by obtained address if kernel
address space layout randomization (KASLR) [20] is enabled
to prevent exploitation of memory corruption vulnerabilities.
Also, it is necessary to clear the write protection bit of the
control register if modifying the syscall table is required.

1The source is public: https://github.com/eecheng87/ESCA.



Two syscalls, batch_register and batch_flush, are
introduced: the former will only be called once, responsible
for mapping shared table and initialization, while the latter
will execute the syscalls currently accumulated on the shared
table at one time. Listing 4 shows the corresponding code.

1 long sys_batch(struct pt_regs *regs) {
2 while (batch_table[i].rstatus == BUSY) {
3 batch_table[i].ret =
4 indirect_call(
5 syscall_table[batch_table[i].sysnum],
6 batch_table[i].nargs,
7 batch_table[i].args);
8 batch_table[i].rstatus = EMPTY;
9 i = (i == table_max) ? 1 : i + 1;

10 }
11 }

Listing 4. Code snippet of flushing handler

E. Execute System Call Indirectly

After the decoupling syscall, it cannot be triggered from the
wrapper provided by glibc. Instead, ESCA will invocate the
syscall handler from the kernel space according to the type
and parameters of the syscall on the shared table. Also, the
address of the syscall handler can be retrieved by adding the
offset to the syscall table.

timeout write error latency (µs) RPS
lighttpd 0 0 762.88 33402

lighttpd-Async-ESCA 0 0 724.53 35897

Table I. Integrate async-ESCA into lighttpd

V. EXPERIMENT

In this section, we will discuss different event-driven ap-
plications and explain how to apply to ESCA. Also, we will
evaluate them by both micro- and macro-benchmarks, mea-
suring the overhead of mode switch, loading, and throughput.

Although ESCA can work in an asynchronous manner,
the common event-driven applications are designed as a syn-
chronous model. Converting them into an asynchronous model
is not trivial. Also, the impact on performance is unknown.
After primitive testing, we did not find asynchronous-ESCA
can bring benefits from event-driven applications designed
with a synchronous model (The experiment result is shown
in Table I). As a result, all of the following experiments are
dedicated to synchronous-ESCA.

A. Experimental Environment

The experiments presented in this section are run on an
AWS t4g.micro instance powered by Arm-based AWS Gravi-
ton2 processors with the characteristics shown in Table II.
The reason we choose AWS Graviton2 processor is that its
instances deliver up to 40% better price performance for all
workloads over comparable x86-based instances. The limited
number of cores will not affect our experiments, because both
targets with and without ESCA are not scalable. As shown in
Table III, the throughput does not grow as core numbers grow.

Component Specification
Cores 2

Memory 1 GiB
Architecture aarch64
L1 caches 64 KiB

L2 cache/vCPU 1 MiB
LLC 32 MiB

Kernel version 5.11.0

Table II. Characteristics of AWS t4g.micro instance

Target
Cores 1 2 4 8

lighttpd 82,184 79,819 81,460 78,583
lighttpd-ESCA 99,115 95,651 96,284 96,261

Table III. Throughput with different core numbers

B. Benchmarking

1) Mode Switch Overhead: The mode switch consists of
entering to the kernel and returning from the kernel, and both
of them are similar. For example, the overhead of entering
kernel includes flushing user-mode pipeline, storing user-mode
registers, restoring kernel-mode register, etc.

To evaluate the overhead, we create a new syscall whose
handler will return immediately. The time elapsed of executing
it is almost equal to the time of mode switch. In our experi-
ment, a mode switch (enter and exit) takes 800 ∼ 1000 CPU
cycles (with Meltdown mitigation). In other words, it takes
300 ∼ 370 ns under the machine with a 2.7 GHz clock.

2) Throughput: It is a very common way to evaluate
the performance of event-driven applications by throughput.
Higher throughput means that applications can handle more re-
quests. For web server, we use a modern HTTP benchmarking
tool wrk [21] to generate the HTTP payloads. We will get the
average rate of the incoming requests (RPS) from it. For Redis,
we use its built-in benchmarking tool redis-benchmark
which also uses RPS as the basis for evaluation.

3) Load: Aside from throughput, the loading of applica-
tions is also an important basis for evaluation. The way we
evaluate loading is to measure the time it takes in main loop to
complete a certain number of requests. Also, the experiments
will be done with different connection numbers (from 100 to
200). If the time in the loop is less, it means that the CPU can
take its time elsewhere and improve the overall efficiency.

C. Real-World Applications

Most of the web servers have the characteristics in common:
(1) an infinite loop; (2) using epoll-like syscall to listen
to the events on the ready list; (3) with corresponding event
handlers to handle ready events.

In the following experiments, we run wrk with two threads
because of our machine’s core number. We choose 50 as
connection numbers because of the design of ESCA. When the
shared table is full, all batched syscalls on it will be flushed
implicitly. This means that setting the connection number to
a number over 64 will not make any difference. First, we
measure the distribution of the throughput with small payloads
which sizes are between 1 KiB and 40 KiB. Second, we
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measure them with large payloads which sizes are between
100 KiB and 200 KiB. The reason we design two types
of experiments to measure the throughput of applications is
that the performance of applications shows different trends in
these two scenarios. Details will be covered in the following
sections.

1) Mongoose: As a start, we selected Mongoose2, which
provides easy used and robust API for users to write a
web server. In this experiment, we mark the for loop in
mg_mgr_poll as the batching segment. As shown in Figure
8, the throughput of Mongoose-ESCA transmitting small pay-
loads, in the best case and the average case, can be improved
by 22% and 13% respectively. On the other hand, Figure
11 shows that transmitting large payloads with Mongoose-
ESCA can increase the performance by 62% in the best case.
Considering applications load, Figure 5 shows that Mongoose-
ESCA takes less time in the main loop between connection
numbers from 10 to 200. No matter from the perspective of

2CivetWeb was forked from Mongoose in 2013, before the later changed
its licence from MIT to commercial + GPL. The mission of CivetWeb is to
provide easy-to-use and powerful embeddable web server with optional CGI,
SSL and Lua support. They both are widely used, and ESCA is beneficial to
them as well.

throughput or loading in the main loop, ESCA can improve
both of them. The results are under our expectations because
ESCA effectively reduces the number of user-kernel crossings.

2) lighttpd: The next target is lighttpd, a bigger single-
threaded high-performance web server. Like most event-driven
web servers, lighttpd listens to incoming events on epoll-
instance and continues to do corresponding event handling. In
this experiment, we use lighttpd v1.4 and mark the for loop
in main_server_loop as the batching segment. Figure 9
shows that the throughput of the lighttpd-ESCA web server
has improved at most 23% in small payloads cases (8%
on average). The default network-backend-write operation of
lighttpd was set to writev. To enhance the performance, it
uses sendfile to handle write operations if payloads are
greater than 35 KiB. Although we don’t find lighttpd-ESCA
has improvement in large payloads scenarios (as shown in
Figure 12), we also don’t find any regression. The reason why
ESCA cannot bring benefits to large payloads is caused by
batching latency. Under the batching strategy, the execution
of the syscalls will be deferred and will only be executed
after flushing. This side effect will be detailedly explained in
the following section. Besides batching latency, ESCA itself
has overhead (recording syscalls’ arguments) to applications.



With the fewer connection numbers, the fewer syscalls can
be batched and fewer benefits can be brought from ESCA.
As shown in Figure 6, when the number of connections in
lighttpd-ESCA is greater than 20, the benefits brought from
ESCA start to be greater than its overhead.

3) Nginx: Nginx was designed with high-performance,
lower footprint, multi-threading and event-driven concurrency
in mind. The master process of Nginx is responsible for
initializing and managing worker processes, while the worker
process is responsible for processing new connections and
transmitting request payloads. Nginx, on Linux, also uses
epoll to listen to events. However, regardless of the size
of the requested file, it is transmitted through sendfile.
In this experiment, we use Nginx v1.20.1 and mark the for
loop in ngx_epoll_process_events as the batching
segment. Figure 10 shows that the throughput of Nginx-ESCA
transmitting small payloads, in the best case and the average
case, can be improved by 12% and 7% respectively. Similar
to lighttpd, Nginx does not gain significant improvements in
large payloads scenarios (as shown in Figure 13). Figure 7
shows that when the number of connections in Nginx-ESCA
is greater than 20, the loading in the loop begins to get the
upper hand.

4) Key Value Database: Besides web servers, key-value
databases, data storage paradigm designed for storing and
retrieving, are illustrated. Performance is an important con-
cern for key-value databases since they have to handle
client requests effectively. Redis, one of the well-known
key-value databases, uses epoll to listen for events and
processes events through read and write. In this ex-
periment, we use Redis v6.2.5 and mark the for loop in
handleClientsWithPendingWrites as the batching
segment. It is evaluated by built-in Redis-benchmark, which
can be used to simulate an arbitrary number of clients con-
necting at the same time and performing actions on the server,
measuring how long it takes for the requests to be completed.
We set the connections number as 100, the pipeline number
as 16, and the total number of requests as 100000. The result
of experiments shows that Redis-ESCA can improve 3% and
4% performance in SET and GET respectively.
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Figure 15. Batching latency brought from different payloads

D. Modeling the Performance of ESCA-applications

In this section, we tried to model the throughput of ESCA-
applications with different numbers of batching syscall. We
define D as batching degree which means the average numbers
of syscall would be flushed each time, C as convergent point,
which equals to the average connections number times num-
bers of supported syscall type. If the result is greater than the
size of shared table, C should be set to the maximum available
entry number of table. Further, we assume the throughput
grows steadily before the convergent point and define α as a
constant coefficient. Following is the equation which models
ESCA-applications:

Throughput =

{
αD, if D < C

αC, if D ≥ C

We take Nginx as a demonstration, given the connections
number 20 (can be controlled by wrk), the average connection
number is 19, the supported syscall types are 2 (sendfile
and close), and the max table size is 64. Therefore, the
convergent point should be 38 (average connections number
times numbers of supported syscall type).

As shown in Figure 14, ideally, the performance of Nginx-
ESCA grows steadily before the convergent point. After that,
the performance will remain stable. In our experiment, we
find that the real trend of the performance of Nginx-ESCA
almost follows our model. Its performance stagnates near to
ideal convergent point.

VI. LIMITATIONS

A. Manually Find Hot Spot

The user of ESCA is responsible for finding the syscall-
intensive section in the applications and marking it as a
batching segment. Besides, the user also needs to confirm
whether the segment is valid: If yes, it is a batch-able segment.
Due to the deferred execution of syscalls in ESCA, for
correctness, we need to ensure that there are no dependency
issues in the batching segment. Although it does limit the
available scope, we still can alleviate the restrictions with some
facts. We find that syscalls like write/writev scarcely fail,
so we can assume the result is successful. Now, accessing
undetermined l-value is suppressed and it really helps extend
available scenarios.



B. Large Payloads Transmission

It is very common to evaluate the server with throughput and
latency. The former is critical to whether the manufacturer can
simultaneously serve a large number of customers. The latter
affects whether customers can receive a response as soon as
possible. Severe latency implies that fewer customers can be
served in the same period, which also means that throughput
is reduced. Because of batching latency, we observe that
ESCA would not improve the performance of transmitting
large payloads as small payloads do. As shown in Figure
15, Task B handling smaller payloads suffers less overhead
from batching latency. Although batching latency, in some
scenarios, may lower the benefits brought from ESCA, com-
pared to prior work with the provision of recvmmmsg()
and sendmmmsg() [10], the batching latency of ESCA is
bounded. Because accumulated syscalls will be executed by
calling batch_flush at the latest, there are only the first
few requests being delayed. It is a good deal to make: A trade-
off between delays in few requests and overall performance
(throughput and loading) improvement.

VII. CONCLUSION

The main objective of this work was to reduce the per-
syscall overhead through the use of effective syscall aggre-
gation. For that purpose, ESCA takes advantages of system
call batching and exploits the parallelism of event-driven
applications by leveraging Linux I/O model to overcome
the disadvantages of previous solutions. Although the current
implementation needs further improvement, the evaluation
showed that the main objective could be achieved: ESCA is
capable of reducing the per-syscall overhead by up to 62% for
embedded web servers. Real-world highly concurrent event-
driven applications such as Nginx and Redis are known to
benefit from ESCA, along with full compatibility with Linux
syscall semantics and functionalities.

Our findings can be used by Linux developers for the sake
of long-term syscall maintenance. In particular, with syscall
aggregation mechanisms such as ESCA, the kernel APIs can
be kept clean and elegant without the need of “macro” syscalls
such as sendmmsg and recvmmsg which combine various
kernel operations. If there was a batching syscall, the above
could be implemented in user space, reducing the kernel
complexity and still ensuring the performance.

Future Work

To improve the throughput of applications when transmit-
ting large payloads, multi-threaded offloading is an empiri-
cal method to achieve. This is also one of the challenges
io uring devoting to conquering. However, both the maturity
of io uring and the suitability of applying asynchronous I/O to
applications with a synchronous model remain questionable.
To maintain asynchronous I/O, it needs a blocking function
such as io_uring_wait_cqe to wait for completion,
which might ruin the design and hamper the performance
of event-driven applications. Although our current design is
compatible with asynchronous I/O, we are not confident if

the latest highly concurrent event-driven applications based on
synchronous I/O are fully capable of performing asynchronous
I/O model transition without considerable engineering efforts.
For future work, we will look for opportunities of consolidat-
ing efficient asynchronous I/O for service-oriented applications
transparently.
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